344=16t^2+192

Simple and best practice solution for 344=16t^2+192 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 344=16t^2+192 equation:



344=16t^2+192
We move all terms to the left:
344-(16t^2+192)=0
We get rid of parentheses
-16t^2-192+344=0
We add all the numbers together, and all the variables
-16t^2+152=0
a = -16; b = 0; c = +152;
Δ = b2-4ac
Δ = 02-4·(-16)·152
Δ = 9728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9728}=\sqrt{256*38}=\sqrt{256}*\sqrt{38}=16\sqrt{38}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{38}}{2*-16}=\frac{0-16\sqrt{38}}{-32} =-\frac{16\sqrt{38}}{-32} =-\frac{\sqrt{38}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{38}}{2*-16}=\frac{0+16\sqrt{38}}{-32} =\frac{16\sqrt{38}}{-32} =\frac{\sqrt{38}}{-2} $

See similar equations:

| –2=2k | | 3n-9=7n-14 | | X2+16x+55=3 | | t^2=15.75 | | 14.5=1.5+.25x | | 45n=(n-2)180 | | 0.38+15g=24.5 | | (16x+90)*2=180 | | ((400/11e)-1)*100=0.2 | | 0.38g+15=24.5 | | -1+8/3(1/4*x)=2 | | 5/9x+27=5/x+3-2/9 | | ((400/11e)-1)*100=20 | | –8x–27=32 | | 5/9x+27=(5/x+3)-2/9 | | -1-(8/3)*(1/4*x)=2 | | (400/11e-1)*100=20 | | r−–3=18 | | -1-8/3(1/4*x)=2 | | -3j=-9 | | x-4=6x-54 | | 100=x(21+x) | | -8(x-1)+9x=-3+9 | | 9(f+15)=315 | | −x=6/7 | | 1.12x=6.05 | | 5-m=40 | | 400/11e-1=20 | | 172n=(n-2)180 | | 10=3r+6-4r | | 3x/2+1/2=-4 | | 5x=12x-2 |

Equations solver categories